3.149 \(\int \frac{\sin ^2(e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx\)

Optimal. Leaf size=111 \[ \frac{\sqrt{a+b \sin ^2(e+f x)} E\left (e+f x\left |-\frac{b}{a}\right .\right )}{b f \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}}-\frac{a \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (e+f x\left |-\frac{b}{a}\right .\right )}{b f \sqrt{a+b \sin ^2(e+f x)}} \]

[Out]

(EllipticE[e + f*x, -(b/a)]*Sqrt[a + b*Sin[e + f*x]^2])/(b*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (a*EllipticF[e
+ f*x, -(b/a)]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(b*f*Sqrt[a + b*Sin[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.126082, antiderivative size = 111, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3172, 3178, 3177, 3183, 3182} \[ \frac{\sqrt{a+b \sin ^2(e+f x)} E\left (e+f x\left |-\frac{b}{a}\right .\right )}{b f \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}}-\frac{a \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (e+f x\left |-\frac{b}{a}\right .\right )}{b f \sqrt{a+b \sin ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^2/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(EllipticE[e + f*x, -(b/a)]*Sqrt[a + b*Sin[e + f*x]^2])/(b*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (a*EllipticF[e
+ f*x, -(b/a)]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(b*f*Sqrt[a + b*Sin[e + f*x]^2])

Rule 3172

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Dist[
B/b, Int[Sqrt[a + b*Sin[e + f*x]^2], x], x] + Dist[(A*b - a*B)/b, Int[1/Sqrt[a + b*Sin[e + f*x]^2], x], x] /;
FreeQ[{a, b, e, f, A, B}, x]

Rule 3178

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Dist[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[1 + (b*Sin
[e + f*x]^2)/a], Int[Sqrt[1 + (b*Sin[e + f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] &&  !GtQ[a, 0]

Rule 3177

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[e + f*x, -(b/a)])/f, x]
 /; FreeQ[{a, b, e, f}, x] && GtQ[a, 0]

Rule 3183

Int[1/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Dist[Sqrt[1 + (b*Sin[e + f*x]^2)/a]/Sqrt[a +
b*Sin[e + f*x]^2], Int[1/Sqrt[1 + (b*Sin[e + f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] &&  !GtQ[a, 0]

Rule 3182

Int[1/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(1*EllipticF[e + f*x, -(b/a)])/(Sqrt[a]*
f), x] /; FreeQ[{a, b, e, f}, x] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{\sin ^2(e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx &=\frac{\int \sqrt{a+b \sin ^2(e+f x)} \, dx}{b}-\frac{a \int \frac{1}{\sqrt{a+b \sin ^2(e+f x)}} \, dx}{b}\\ &=\frac{\sqrt{a+b \sin ^2(e+f x)} \int \sqrt{1+\frac{b \sin ^2(e+f x)}{a}} \, dx}{b \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}-\frac{\left (a \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}\right ) \int \frac{1}{\sqrt{1+\frac{b \sin ^2(e+f x)}{a}}} \, dx}{b \sqrt{a+b \sin ^2(e+f x)}}\\ &=\frac{E\left (e+f x\left |-\frac{b}{a}\right .\right ) \sqrt{a+b \sin ^2(e+f x)}}{b f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}-\frac{a F\left (e+f x\left |-\frac{b}{a}\right .\right ) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}{b f \sqrt{a+b \sin ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.221119, size = 78, normalized size = 0.7 \[ \frac{\sqrt{2 a-b \cos (2 (e+f x))+b} \left (E\left (e+f x\left |-\frac{b}{a}\right .\right )-F\left (e+f x\left |-\frac{b}{a}\right .\right )\right )}{b f \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[e + f*x]^2/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(Sqrt[2*a + b - b*Cos[2*(e + f*x)]]*(EllipticE[e + f*x, -(b/a)] - EllipticF[e + f*x, -(b/a)]))/(b*f*Sqrt[(2*a
+ b - b*Cos[2*(e + f*x)])/a])

________________________________________________________________________________________

Maple [A]  time = 0.835, size = 93, normalized size = 0.8 \begin{align*} -{\frac{a}{b\cos \left ( fx+e \right ) f}\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}} \left ({\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) -{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) \right ){\frac{1}{\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x)

[Out]

-a*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)/b*(EllipticF(sin(f*x+e),(-1/a*b)^(1/2))-EllipticE(sin(f*x
+e),(-1/a*b)^(1/2)))/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{2}}{\sqrt{b \sin \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^2/sqrt(b*sin(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-b \cos \left (f x + e\right )^{2} + a + b}{\left (\cos \left (f x + e\right )^{2} - 1\right )}}{b \cos \left (f x + e\right )^{2} - a - b}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-b*cos(f*x + e)^2 + a + b)*(cos(f*x + e)^2 - 1)/(b*cos(f*x + e)^2 - a - b), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**2/(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{2}}{\sqrt{b \sin \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)^2/sqrt(b*sin(f*x + e)^2 + a), x)